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Accurate person perception is crucial in social decision-making. One of the central elements in successful
social perception is the ability to understand another’s response bias; this is because the same behavior
can represent different inner states depending on whether other people are yea-sayers or naysayers. In
the present study, we have tried to investigate how the internal biases of others are perceived. Using a
multi-trial learning paradigm, perceivers made predictions about a target’s responses to various sug-
gested activities and then received feedback for each prediction trial-by-trial. Our hypotheses were that
(1) the internal decision criterion of the targets would be realized through repeated experiences, and (2)
Caudate nucleus due to positive-negative asymmetry, yea-sayers would be recognized more gradually than naysayers
DLPEC through the probabilistic integration of repeated experiences. To find neural evidence that tracks
fMRI probabilistic integration when forming person knowledge on response biases, we employed a
model-based fMRI with a State-Space Model. We discovered that person knowledge about yea-sayers
modulated several brain regions, including caudate nucleus, DLPFC, hippocampus, etc. Moreover, when
person knowledge was updated with incorrect performance feedback, brain regions including the
caudate nucleus, DLPFC, dmPFC, and TP] were also involved. There were overlapping regions for both
processes, caudate nucleus and DLPFC, suggesting that these regions take crucial roles in forming person
knowledge with repeated feedback, while reflecting acquired information up to the current prediction.
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1. Introduction

A substantial part of our lives consists of meeting other people
and getting to know them better. To thrive in our social life, we
spend considerable time speculating on what others would think
and do (Dunbar, 2003). That is because having accurate knowledge
about other individuals is a key to success in this area (for a review,
see Zaki & Ochsner, 2011). In this sense, it is crucial to know the
degree to which people’s behavior genuinely represents their
mind. Response biases are closely related to this representational
discrepancy between observable behavior and internal states of
mind. According to classical decision theories (Green, 1966;
Yonelinas, 2002), the criterion is an important factor that deter-
mines behavior, because a decision results from an interaction
between the criterion and evidence (i.e. the strength of stimuli).
A response bias entails that the decision criterion is biased, and
in this manner, evidence falls above the criterion with either a high
or a low probability. Thus, those who have a liberal criterion
(yea-sayers) are likely to give positive responses, while those with
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a more conservative criterion (naysayers) are less likely to do so.
Interestingly, response biases are stable across different contexts
(Berg, 1955; Couch & Keniston, 1960; Furnham, 1986), and reflect
underlying personality traits (e.g., acquiescence, agreement, and
social desirability) (Couch & Keniston, 1960; Furnham, 1986). Thus,
response biases carry valuable information required for under-
standing others’ current behavior and making correct predictions
about their future behaviors as well. Despite its importance in suc-
cessful social cognition, however, little is known about how we
perceive others’ response biases in social interactions and which
neural regions are involved in this process.

The key question that needs to be answered first is how we come
to realize others’ response biases. A growing body of research have
shed light on the neural underpinnings for person impression for-
mation and the update process with inconsistent information
which violates the first impression (Bhanji & Beer, 2013; Ma et al,,
2012; Mende-Siedlecki, Baron, & Todorov, 2013; Mende-Siedlecki,
Cai, & Todorov, 2013). Although these studies neatly showed how
rapidly-formed impression is updated with inconsistent evidence,
in the current study, we explored further to investigate how
impression is gradually formed over the multiple encounter with
the opposite person. Unlike in a spontaneous trait inference, a
perceiver should integrate a number of incidents in order to read
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how frequently the person answered positively/negatively. Thus,
the crux of this problem lies in the multiple experiences with
the person and the way we attribute those experiences. A single
response observed only once is not attributable to either a situa-
tional factor or an internal response bias, and this fact necessitates
multiple observations. Moreover, it is still impossible to infer a
response bias if attribution is made to an external context. Conse-
quently, we should focus more attention on the internal state of
the person. In this manner, the multiple responses of a person
can be generalized and integrated, and thus, can contribute to
refining our knowledge about a single response criterion. In the
repeated experiences, spontaneous probabilistic computation is
likely to take place, like in typical multi-trial feedback-based
learning (for a review, see Niv, 2009). That is, response observation
would not necessarily explicitly bring up the concept of response
bias, but the experiences will instead be calculated probabilisti-
cally and stored for future use. To quantify the amount of such
probabilistic knowledge (i.e., learning state), a learning model
named State-Space Model (SSM, Smith et al., 2004) is used. Previ-
ous studies on SSM showed that this model is more sensitive than
other Reinforcement Learning (RL) models in capturing hidden
learning performance (i.e., the degree to which knowledge is
formed). This is because the model assumes an ideal observer
who knows the entire trials when fitting observed data into a hid-
den learning equation (Kakade & Dayan, 2002; Smith et al., 2004)
while other RL model only considers the trials up to the current
observation. Therefore, SSM has strong validity in that the
estimated amount of accumulated knowledge that is obtained
from the model is well tracked at a neural level (Kumaran,
Summerfield, Hassabis, & Maguire, 2009; Smith et al., 2004;
Solomon, Smith, Frank, Ly, & Carter, 2011).

In addition to accumulated knowledge, knowledge-updating
process itself is worth examining as well. Incorrect performance
feedback is especially important here, because it elicits internal
expectation violation, and so guides alternative correct predictions
(Holroyd & Coles, 2002; Zanolie, Van Leijenhorst, Rombouts, &
Crone, 2008). Although learners may capitalize on both correct
and incorrect performance feedback, correct feedback conveys no
more information than has already been accrued. In this sense,
negative outcomes (i.e., “wrong”) in feedback-based gradual learn-
ing have greater informational value than positive outcomes (i.e.,
“right”).

Positivity and negativity of the biases is another critical issue.
Given that yea-sayers have a higher probability of giving positive
responses, while naysayers have a higher probability of giving neg-
ative ones, the positivity and negativity of responses would affect
the way repeated experiences are generalized into knowledge
about criterion. If positivity and negativity exhibit an asymmetrical
influence upon the generalization process, this can have two possi-
ble consequences. The first is that positive responses are more
readily generalizable and so serve as a better means of highlighting
the underlying response criterion. In this way, observing a “yes”
response would contribute more to person knowledge (asymmet-
rical integration - positivity dominance). The second possibility
is that it is easier to recognize and integrate knowledge about a
person’s decision criterion from their negative responses (asym-
metrical integration - negative dominance). On the other hand, if
positivity and negativity do not asymmetrically influence the gen-
eralization process, observing a “yes” or a “no” would equally
develop into adequate person knowledge about yea-sayers and
naysayers (symmetrical integration).

In line with potential asymmetrical integration - in particular,
the positivity dominance hypothesis - a substantial body of
literature has shed light on positive-negative asymmetry in a
range of diverse cognitive domains, such as valuation (Kahneman
& Tversky, 1979), mood (Forgas, 1998), and episodic memory

(Kensinger & Schacter, 2006; Ochsner, 2000). For example, it was
discovered from mood-induced processing differences (Bless,
Mackie, & Schwarz, 1992; Bless et al., 1996) that a perceiver is
more likely to commit fundamental attribution errors when they
are in a good mood, so that they tend to attribute the behavior of
others to dispositional factors, while neglecting the role of situa-
tions (Forgas, 1998). More importantly, positivity itself also plays
arole in the degree to which representation is generalized. As Tol-
stoy observes in a famous statement from Anna Karenina, “Happy
families are all alike; every unhappy family is unhappy in its
own way” (quoted in Unkelbach, Fiedler, Bayer, Stegmuller, &
Danner, 2008), there seems to be much less variety in positivity
than there is in negativity. Supporting this observation, positive
objects have denser semantic nodes and a more homogeneous rep-
resentation, while negative objects have a more heterogeneous
representation (Unkelbach et al., 2008). Similarly, there are lines
of research that suggest positivity induces broader and more gen-
eralized cognitive processing. Positive mood expands attentional
breadth (Fredrickson & Branigan, 2005) and increases exploration
behavior (Fredrickson, 2001). Moreover, positivity also plays a role
in memory. Memories about positive stimuli are less accurate
(Ochsner, 2000), while, in contrast, those about negative stimuli
are more detailed and accurate (Kensinger & Schacter, 2006). For
example, Ochsner (2000) found that individuals respond that they
“know”, but do not “remember”, the positive item, suggesting that
people have a less detailed memory about the positive items they
encounter. On the other hand, Kensinger and Schacter (2006) have
demonstrated that our memories about negative episodes are
formed in a more detailed manner.

In the current study, we sought to investigate how multiple
responses are generalized into the concept of a response criterion
and how we learn about positive and negative response biases to
different degrees. To examine this process, we employed a feed-
back-based learning paradigm (Gluck, Shohamy, & Myers, 2002;
Knowlton, Mangels, & Squire, 1996; Maddox, Ashby, Ing, &
Pickering, 2004). In our experimental paradigm, participants made
a prediction and observed other people’s responses to various sug-
gested activities. A respondent’s answers were expected to serve as
a cognitive feedback for the observer, who will then accumulate
this information and generalize it in order to make predictions.
Although similar to traditional weather prediction tasks
(Knowlton et al., 1996), our paradigm is distinct in that the objects
(i.e., the activity that a responder was asked to perform) varied
trial-by-trial, with a target person and question (“Would she per-
form the activity?”) fixed. By doing so, we focused on inducing
generalized knowledge rather than activity-reaction associations.
With functional magnetic resonance imaging, we further aimed
to explore the neural correlates of both the representation of prob-
abilistic knowledge in the brain and the knowledge update process.
Furthermore, by using a conjunction analysis, we sought to locate
the knowledge-updating regions of the brain that are modulated
by previously acquired knowledge. An information-sensitive cau-
date nucleus and DLPFC were hypothesized as providing the means
by which knowledge about response biases was updated while
being modulated by the amount of information.

2. Experiment 1: behavioral study

We first conducted a behavioral experiment in which partici-
pants made a prediction about a responder’s reaction (i.e. “yes”
or “no”) and received feedback from multiple cases. With this feed-
back-based learning paradigm, we aimed to investigate if learning
occurs in line with the responder’s actual response tendency, and if
the learning performances for yea-saying and naysaying are poten-
tially asymmetrical.
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2.1. Materials and method

2.1.1. Participants

Eighteen participants took part in the study in return for course
credit or monetary compensation (10,000 KRW/h). Informed con-
sent was obtained from all participants in accordance with the
guidelines of the Yonsei University Institutional Review Board.

2.1.2. Stimuli

For the response prediction task, each target responder’s face
and name, as well as the particular activity they had to perform,
were all used as prediction cues. In order to minimize possible gen-
der effects in perceiving response biases, we confined all target
responders to female. Three faces with neutral facial expressions
were pooled from the Korea University Facial Expression Collection
(KUFEC, Lee, Lee, Lee, Choi, & Kim, 2006) and peudorandomly
assigned to Yea-sayer, Naysayer, and Neutral conditions. The pho-
tos had gray backgrounds and their size was set to 180 x 200 pix-
els. The faces assigned to yea-sayer and naysayer conditions, which
were the conditions of interest, did not differ in terms of attractive-
ness, masculinity, or extroversion (attractiveness t(17)=.08,
p=.94, ns., masculinity t(17)=.09, p=.93, n.s., extroversion
t(17)=.-21, p = 83, n.s.) when tested with pilot ratings from seven
independent raters. The target responders had a predetermined
dominant response of saying “yes” or “no” Specifically, a yea-sayer
target responded “yes” for 80% of the trials while a naysayer target
responded “no” for 80% of them. A neutral target responder with
no response bias responded “yes” and “no” in equal probabilities
(50% each). As a cue to assist learning, names appeared with faces.
The set of activities, about which participants were asked to pre-
dict whether the target responder would be willing to perform
them or not, consisted of 50 everyday activities including hobbies,
sports activities, etc.

2.1.3. Procedure

Prior to the main prediction task, a familiarization process took
place so that participants could focus on relevant information (i.e.,
face and activity) in the learning phase. Participants were
instructed to remember the face-name pairs of six people, includ-
ing the target responders, for 1 min and to then recall the name
when each face was presented separately. After they were exposed
to all the target responders, participants were given the main pre-
diction task.

The response prediction task required participants to guess
whether the target responder would agree or disagree to perform
a suggested activity (Fig. 1). The goal was to have as many correct
guesses as possible, which required participants to learn the gen-
eral response tendency of the target responder trial-by-trial. There
were five blocks in total, with each block consisting of thirty learn-
ing trials, followed by probe trials. The cue periods and feedback
periods were repeated for each learning trial. For cue periods, the
face and name of a target responder, as well as the activity in ques-
tion, were presented on the screen for 3000 ms. The suggested
activities for a target responder varied across the trials, while the
set of activities was the same for all targets. The question asked
to the participants (whether the target responder would perform
a certain activity) appeared underneath the target’s face.
Responses were made by pressing the “G” and “H” keys on a key-
board for “yes” and “no”, respectively. The response duration was
limited and fixed to 3000 ms. When participants provided an
answer, an asterisk appeared for the remaining response duration
above the option selected. Feedback showing the target respond-
ers’ actual answer (“yes” or “no”) and the correctness of the predic-
tion was given for 3000 ms after the prediction period. The
correctness was indicated by the font color of the responder’s
answer: green for correct predictions and red for incorrect ones.

“WOULD SHE AGREE TO DO THIS ACTIVITY?”

Going to a movie? Riding a bike?

Response Condition
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Fig. 1. Response prediction task. In a response prediction task, participants were
asked to make a prediction on whether the target would agree to engage in an
activity (3000 ms). Feedback indicating a response of target and the correctness of
prediction followed (3000 ms). Correct performance feedback was indicated by
green color whereas incorrect feedback appeared in red color. There were three
conditions where targets answered yea for 80% (YEA), 20% (NAY), and 50% (NTR),
respectively.

In-between the prediction and feedback periods a fixation cross
appeared for a variable period (somewhere between 1000 and
3000 ms, but averaging at 2000 ms). Probe trials were given at
the end of each block, which asked the participant to estimate
the probability that each responder would allow the participants
to check whether they had acquired knowledge properly. Partici-
pants provided their estimation of the targets’ general response
tendency, and the degree of confidence they felt in their estima-
tion, by using a 5-point scale. Responses were self-paced and made
by manipulating the*«" and “—” buttons, marked by a sticker on
the keyboard, in order to go left and right respectively. A third but-
ton, between the two arrow keys, was used to finalize their
responses. Each condition was pseudorandomized, keeping the
response ratio (i.e., 8:2, 2:8, and 5:5) constant within each block.
Each block consisted of trials on all targets that are intermixed
with one another. Participants made predictions and received feed-
back 50 times for each target responder over five blocks, and there
were 150 learning trials in total. After the experiment, participants
completed personality inventories on the Barratt Impulsivity Scale
11th edition (Patton, Stanford, & Barratt, 1995) and the Social
Interaction Anxiety Scale (Mattick & Clarke, 1998). Upon comple-
tion, all participants were debriefed.

2.2. Results and discussion

To check if participants were able to make a prediction in line
with a target responders’ response bias, we first checked the prob-
ability of correctness with a one-sample t-test. The probability of
obtaining a correct answer was significantly higher than chance
level (.5) for yea-sayer learning (mean probability correct=.75,
t(17)=7.385), p <.01) and naysayer learning (mean probability cor-
rect=.63, t(17) = 2.83, p <.05), but not for neutral target learning
(mean probability correct = .56, t(17) = 1.78, p > .05, n.s.).

Of interest was the evident asymmetry between the way in
which participants learned about and identified yea-sayers as
opposed to naysayers. A paired t-test comparing the learning
performances for yea-sayer and naysayer targets revealed that
the accumulated probability of getting a correct answer under
the yea-sayer condition was significantly higher than under the
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naysayer condition (mean difference=.12, t(17)=2.914, p<.01;
Fig. 2). Interestingly, differences in performance success between
learning conditions were not uniform across test blocks. Although
the interaction of an ANOVA conducted between the bias direction
and test blocks did not reach statistical significance (F(4,14)=.73,
p > .05, n.s.), post hoc t-tests on bias conditions for each learning
block showed that, for the first and second learning blocks, learn-
ing performances were significantly different between yea-sayer
targets and naysayer targets (mean difference: first block M = .18,
t(17)=2.5, p<.05, second block M =.17, t(17) = 2.35, p <.05), but
that these differences gradually lessened as the learning process
continued (third block, M =.07, t(17)=1.29, p = .21, fourth block,
M=.09, t(17)=1.49, p=.15, fifth block, M=.09, t(17)=1.49,
p=.15).

The results showed that predictions were made in line with
each target’s response bias, indicating that learning had occurred
during the trials. Moreover, learning performance was better for
yea-sayer targets than for naysayer targets, suggesting a discrete
learning process. This also supports the hypothesis that positive
responses are perceived as the evidence of a responder’s internal
judgment criterion (i.e., response bias) rather than as the evidence
of his or her preference to engage in a specific activity that is attrib-
utable to the situation of being suggested to do such activity. To
further test this hypothesis and to investigate whether knowledge
about response biases is formed by integrating multiple experi-
ences probabilistically, it is necessary to examine the neural corre-
lates of probabilistic knowledge about response biases. In addition,
it is possible that, when the number of experiences increases,
knowledge on response biases could reach a similar level, despite
the heterogeneity of the learning process. To answer these ques-
tions, Experiment 2 examined the neural correlates associated with
the feedback-based learning of response biases, with increased
number of learning trials.

3. Experiment 2: fMRI study

We conducted a functional Magnetic Resonance Imaging (fMRI)
study to identify the neural correlates of forming integrated
knowledge about other people’s response biases. First, we sought
to elucidate the neural underpinnings by means of which knowl-
edge is updated through incorrect performance feedback (which
has high informational value). Second, we aimed to locate the brain
regions that reflect the amount of probabilistic knowledge about
response biases asymmetrically for yea-sayer and naysayer. Third,
in order to examine the common neural substrates in the two
functional processes, we tried to find the overlapped regions by

Learning Performance

conducting a conjunction analysis. Finally, to support that response
biases matter in social perception, we further examined individual
difference according to perceivers’ own response tendencies.

3.1. Materials and methods

3.1.1. Participants

Sixteen participants’ functional neuroimaging data were
acquired. All fMRI participants (10 women, mean age =22.68 -
years, range 19-27) provided informed consent according to the
protocols approved by the Department Review Committee of Yon-
sei University, had normal or corrected-to-normal vision, and were
right-handed and screened for magnetic imaging risk factors. One
participant’s imaging data were not included in the analysis due
to severe signal artifacts.

3.1.2. Stimuli

As in Experiment 1, each target responder’s face, name and
activity were used as prediction cues for the prediction task. All
target responders were female. Three faces with neutral facial
expressions from Korea University Facial Expression Collection
(KUFEC) were randomly assigned to three experimental conditions.
The faces were presented in 180 x 200 pixels with gray back-
grounds. A post hoc analysis of the pilot ratings given by seven
independent raters revealed that the faces assigned to the positive
and negative response bias conditions were not significantly differ-
ent in terms of attractiveness, masculinity, or extroversion (attrac-
tiveness t(15) = —.41, p=.69, n.s., masculinity t(15)=.57, p=.57,
n.s., extroversion t(15) = —.88, p = .39, n.s.). Yea-sayers and naysay-
ers would predominantly answer “Yes” or “No” respectively for
80% of the trials. That is, 80% of trials were congruent with
responders’ internal response biases. A neutral target had no
response bias. Names were shown below faces as cues. The number
of given activities was increased to 80 as there was an increased
number of learning trials in Experiment 2.

3.1.3. Behavioral procedure

The behavioral procedure was identical to Experiment 1 except
for the number of trials, which was increased to 80 trials per target
responder. This was done in order to test whether the learning per-
formance for positive and negative response biases would ulti-
mately become similar as experience accumulates (based on the
results of Experiment 1, where the difference gradually decreased).
Before proceeding to the response prediction task participants
were first familiarized with the target responders by remembering
their names and faces. In the multi-trial feedback-based learning

Learning across Blocks

1 YEA
=3 NAY

l _I'_ T 1 NTR

ll %L % %

(A) 1 vEa (B)
I NAY

0.8 C—INTR 0.81
5 * 5
£ T £ T
3 06 8 06+
= =
3 3
® 0.4 T 0.4
5 5
o o

0.2 0.2

0.0 0.0

Experimental Conditions

u T T Y

2 3
Block

EN
(4]

Fig. 2. Behavioral results. (A) Probability of correct prediction across all trials. Learning performance for positive bias was higher than that of negative bias, suggesting that
positive response is taken as homogeneous concept of judgment criterion (i.e., response bias). (B) Probability of correct prediction for each learning block. Difference for YEA

and NAY conditions were significant at the first two blocks.
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paradigm, participants aimed to have as many correct guesses as
possible. The prediction task was scanned in eight runs, each of
which was comprised of thirty learning trials. Conditions were
pseudorandomized within each block. After scanning each run,
self-paced probe trials asked participants to identify the target
responders’ general tendency in agreements. After all eight runs,
participants answered personality inventories on the Barratt
Impulsivity Scale 11th edition (Patton et al., 1995) and the Social
Interaction Anxiety Scale (Mattick & Clarke, 1998).

3.1.4. fMRI data acquisition and analysis methods

Functional magnetic resonance imaging (fMRI) data was
acquired using an ISOL 3.0 Tesla forte MRI system (ISOL Tech,
Oxford OR63). After the acquisition of high-resolution T1-weighted
anatomical images for visualization, T2 -weighted echo planar
images (EPI) were obtained (TR =2000ms, TE =31 ms, 25 axial
slices parallel to the AC-PC plane, slice thickness =5 mm, no gap,
matrix size = 64 x 64 mm, FOV = 220 mm, interleaved collection).

fMRI data were analyzed using the statistical parametric
mapping, SPM8 (Wellcome Department of Cognitive Neurology,
London, UK). The first five images from each run were discarded
for T1 equilibration. For slice timing correction, imaging data were
temporally corrected by resampling all slices in time relative to the
middle slice. Then, for motion correction, images were realigned to
the first image of each run. To enable the analysis of any random
effects, imaging data were normalized to match an echo planar
imaging (EPI) template by using a 12-parameter affine and
nonlinear cosine transformation. Normalized images were written
in a functional voxel size of 3 x 3 x 3 mm and spatially smoothed
using an 8 mm full-width-at-half-maximum (FWHM) isotropic
Gaussian kernel. After preprocessing, fMRI data were analyzed
with two models: a general linear model and a parametric regres-
sion model with state-space parameters. In the general linear
model, all eight runs were concatenated in order to analyze runs
with an insufficient number of trials in conditions of interest. In
addition, head movement parameters were modeled as regressors
of no interest and covaried out in order to minimize head move-
ment artifacts. For a parametric regression model analysis, each
run was rescaled for the mean global signal to be 100 across the
volumes. Volumes were modeled by convolving a canonical
hemodynamic response function and its temporal derivative with
a boxcar function.

3.1.4.1. Knowledge update with incorrect performance feedback:
general linear model analysis. To find brain regions that update
knowledge on response biases with incorrect performance feed-
back, we first analyzed neuroimaging data with a general linear
model. Specifically, congruent trials were modeled separately for
yea-sayer and naysayer conditions that are then divided into cor-
rect and incorrect trials, resulting in four regressors of interest:
“yea-sayer_correct”, ‘“yea-sayer_incorrect”, ‘“naysayer_correct”,
“naysayer_incorrect”. Incongruent trials, where targets gave oppo-
site responses to their biases, were modeled as a separate regressor
and covaried out for the main contrast. The neutral target condi-
tion was modeled as a combination of four regressors of right
and wrong predictions for “yes” and “no” responses, respectively.
We used boxcar functions convolved with the hemodynamic
response function, whose onsets were marked with feedback pre-
sentation. The cue period of all conditions was modeled and covar-
ied out as a nuisance regressor. As our interest was focused on the
contribution that incorrect performance feedback makes to the
updating of knowledge, incorrect feedback was contrasted with
correct feedback for both response bias conditions. Unless stated
otherwise, the statistical threshold for the general linear model
was corrected for multiple comparisons to p <.05 by using Monte
Carlo simulations (Slotnick, Moo, Segal, & Hart, 2003).

3.1.4.2. The asymmetrical formation of person knowledge: parametric
regression analysis with the State-Space Model. To ascertain the neu-
ral correlates of integrated probabilistic knowledge for yea-sayers
that combine individual experiences, the estimated amount of
knowledge was taken into account with parametric regression
analysis. The accumulated amount of knowledge at each trial,
which is expressed by the probability of obtaining a correct
answer, was estimated by using the learning curve analysis soft-
ware package (available at www.neurostat.mit.edu) in order to
generate a state-space model parameter. This model employs a
smoothing algorithm that estimates the hidden learning process
based on the observed binary response sequence (assuming an
ideal observer who knows the whole response to the end at each
point of estimation). This smoothing algorithm has its advantage
in that it detects and represents the learning process at the neural
level better than traditional models such as found in the Reinforce-
ment Learning (RL) model (Smith et al., 2004).

For estimation, this model contains two equations: an observa-
tion equation and a state equation. An observation equation is in a
Bernoulli probability mass function of the earned data. It defines
the probability of observing a particular response n, (correct=1,
incorrect =0) given a hidden learning probability x,, when the
probability of a correct response, py, is constrained between 0
and 1:

Pr(mlpe, %) = PRE(1 =)' ™

The state equation is in a Gaussian random-walk model to rep-
resent the hidden learning process, where a Gaussian random var-
iable is defined from the distribution of the mean O and the
variance ¢2:

Xk = Xk-1 + &k

Using an expectation maximization (EM) algorithm, the state-
space model finds the best fit for the derived value, p;, from the
observation equation and the state equation. Thus, it estimates
the learning curve by showing the probability of a correct answer
with the maximum likelihood of the observed data. As this learning
curve is believed to accurately represent the learning process at the
neural level (Smith et al., 2004), the obtained learning curve was
used to determine the parameters that covary with the hemody-
namic response function (see Fig. 4). The state-space parametric
modulation regressors of biased response conditions for both cue
and feedback periods were created in the SPM design matrix. The
canonical hemodynamic response function was convolved with a
boxcar function starting at the onset of each regressor. To ascertain
where integrated knowledge formation about yea-sayer targets
occurs, the degree to which knowledge modulates neural activa-
tion in the yea-sayer target condition was contrasted to that in
naysayer target condition.

3.1.4.3. Overlapping regions for incorrect feedback processing and the
estimated knowledge reflection: conjunction analysis. To find the
overlapping regions that are more sensitive to any updated knowl-
edge the more knowledge has been acquired about a target
yea-sayer, a conjunction map was constructed. The map identified
activation in both the incorrect feedback contrast map and the
state-space model-based parametric modulation map.

3.1.4.4. The influence of perceiver’s own response bias: regression
analysis. To assess the influence of a perceiver’s own social desir-
ability bias in perceiving the response of other people, we ran a
regression analysis that wused the Marlowe-Crown Social
Desirability Scale (Crowne & Marlowe, 1960), high scores of which
indicate that respondents are biased toward providing socially
desirable answers. Regardless of feedback correctness, we focused
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on perceiving whether or not the target said they would perform
certain activities, and looked for the regions with an increased con-
trast between negative and positive response perception as the
social desirability bias increased. Beta estimates for medial-tempo-
ral lobe ROIs (Region of Interest), which we defined through the
state-space model analysis reflecting knowledge accumulation,
were extracted using the MarsBar Toolbox for SPM8 (available at
http://marsbar.sourceforge.net/) and regressed with the MCSDS
score.

3.2. Results and discussion

3.2.1. Behavioral data

Replicating the results of Experiment 1, one-sample t-test
revealed that the probability of obtaining a correct prediction
was significantly higher for both positive response bias conditions
(mean probability correct=.71, t(15)=5.35, p<.01) and negative
response bias conditions (mean probability correct = .66,
t(15) = 2.80, p <.05), but not for the control condition in which
there was no response bias (mean probability correct=.51,
t(15)=1.18, p=.86, n.s.), suggesting that participants learned
about the response tendency of other people in line with the actual
response bias. The learning performance during positive response
bias trials was significantly higher than for negative response bias
trials on 50 accumulated experiences (mean difference =.08,
t(15) = 2.27, p <.05), which was also found in Experiment 1, but
when all 80 trials had been experienced, the difference in learning
performance between yea-sayer and naysayer targets was no
longer evident (mean difference =.06, t(15)=.175, p=.10). The
results suggest that, when experiences accrue enough, knowledge
about response biases could reach a similar level despite the heter-
ogeneity of the learning process.

State-space model learning parameter, ideal observer certainty
value, was also compared between the two experimental condi-
tions. We conducted Areas Under the Curve (AUC) analysis to
examine if there is greater certainty (i.e., less variability) in learn-
ing yea-sayer target. Paired t-test revealed that AUC is greater for
yea-sayer learning certainty (mean AUC=63.65) than naysayer
learning certainty (mean AUC=51.98), t(15)=2.44, p=.03. The
results suggest that certainty in learning process is significantly
greater for yea-sayer target, supporting the hypothesis that repre-
sentation of positivity is less variable.

3.2.2. fMRI data

3.2.2.1. Knowledge update with incorrect performance feedback. To
examine how the knowledge is updated by incorrect performance
feedback during learning, we contrasted it with positive feedback,
regardless of target’s actual bias direction. Contrasting incorrect
and correct feedback revealed that the following brain regions all
played a significant role: the caudate nucleus, bilateral dorsolateral
prefrontal cortex (DLPFC), right temporo-parietal junction (rTP]),
dorsomedial prefrontal cortex (dmPFC), hippocampus, etc. (see
Fig. 3 and Table 1). We did not find any gray matter voxels that
were more involved in correct feedback at a very liberal threshold
(p <.01, 5 contiguous voxel extent thresholds), thus supporting the
idea that error feedback has the dominant role in the updating pro-
cess. The results imply that the DLPFC and the caudate nucleus are
involved in the knowledge updating process, especially in the pro-
duction of the incorrect performance feedback that is used in
prediction.

In addition, the involvement of the dmPFC and the rTP] suggests
that a social cognitive process that updates impressions occurs
while learning about other people’s response biases. These regions
have been implicated in person perception, especially when a per-
ceiver reads descriptions about others that are incongruent to their
group identity, and in turn, prior expectation (Cloutier, Gabrieli,

O’Young, & Ambady, 2011). Also, they are reliably implicated in
impression formation and mentalizing tasks (Baron, Gobbini,
Engell, & Todorov, 2011; Cloutier, Gabrieli, O’'Young, & Ambady,
2011; Saxe & Baron-Cohen, 2006; Saxe & Kanwisher, 2003; Saxe
& Wexler, 2005; Saxe, Whitfield-Gabrieli, Scholz, & Pelphrey,
2009; Schiller, Freeman, Mitchell, Uleman, & Phelps, 2009). There-
fore, we believe that this activation pattern provides evidence of
the social cognitive process beyond simple learning.

3.2.2.2. The asymmetrical formation of person knowledge. More
importantly, we were primarily interested in finding which brain
regions were modulated by variations in the amount of knowledge
accrued. A parametric modulation analysis with state-space model
parameters was conducted to detect the neural correlates involved
in forming probabilistic knowledge about yea-sayers. If positive
responses are perceived and integrated as an internal judgment
criterion, rather than as the outcome of situational factors, there
would be neural correlates modulated by the amount of acquired
knowledge up to the trial. For a stricter analysis when extracting
state-space parameters, data from three non-learners, whose
learning performance did not reach a chance level (.5) for either
of the response bias conditions, were excluded from the analysis.
Restricting the analysis only to the feedback periods of those
who demonstrated successful learning behavior, the statistical
threshold was set at p <.005, uncorrected, with an extent threshold
of 5 contiguous 3 mm isotropic voxels. Brain regions for learning,
including the caudate nucleus, DLPFC, hippocampus, ventromedial
prefrontal cortex (vmPFC), and the intraparietal lobe (IPL), were all
found to track the amount of knowledge that had accumulated
about a particular response bias (see Fig. 4 and Table 2). The results
suggest that learning-related regions, such as the caudate nucleus
and DLPFC, are not only involved in updating knowledge but also
reflect the amount of accrued knowledge. Furthermore, in line with
previous studies which showed that the hippocampus and vmPFC
track conceptual knowledge (Kumaran et al., 2009; Schnyer et al.,
2009; Zeithamova, Dominick, & Preston, 2012; Zeithamova,
Schlichting, & Preston, 2012), these regions were found to track
probabilistic knowledge about yea-sayers as well. We also found
IPL involvement, a region that is thought to process numerical
information (Chochon, Cohen, van de Moortele, & Dehaene,
1999), and which is essential in probabilistic reasoning.

3.2.2.3. Overlapping regions for incorrect feedback processing and the
estimated knowledge reflection. Since we found the common
regions that process incorrect performance feedback and reflect
the amount of estimated knowledge that has accrued, we next
sought to identify any overlapping regions. Regions that survived
both analyses were examined by creating binary masks for the
each statistical map can calculating overlapping areas. The analysis
demonstrated that the caudate nucleus (MNI coordi-
nates =[16,2,20]) and DLPFC (MNI coordinates =[-45,14,37])
were commonly involved in both processes (see the inset in
Fig. 3 and notes in Table 1 and Table 2). This suggests that these
regions are involved more sensitively when there is greater
amount of knowledge on yea-sayer target.

3.2.2.4. The influence of perceiver’s own response bias. To examine
how a social desirability bias modulates the perception of negative
responses, we looked for regions showing greater contrasts
between negative versus positive response perception as a func-
tion of the social desirability bias. A regression analysis revealed
that the MTL region is modulated by a perceiver’s own social desir-
ability bias to a greater degree when processing negative answers,
than when processing positive answers, p <.001, 18 contiguous
voxel extent threshold, corrected for multiple comparisons using
Monte Carlo Simulation (Slotnick et al., 2003). Regression analysis
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Fig. 3. Regions involved in knowledge update with incorrect performance feedback. Brain regions including caudate nucleus, bilateral DLPFC (dorsolateral prefrontal cortex),
dmPFC, TP] (temporo-parietal junction) were activated when receiving incorrect performance feedback (p <.001, 5 contiguous voxel extent thresholds, uncorrected for
display purposes). Indicated on an inset are the results of conjunction analysis. The caudate nucleus (MNI coordinates = [16,2,20]) and DLPFC (MNI coordinates = [-45, 14,
37]) were commonly involved in both processing incorrect feedback and reflecting the amount of accumulated knowledge.
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Fig. 4. Regions reflecting the amount of person knowledge on response biases. (A) Brain regions including IPL (inferior parietal lobule), DLPFC (dorsolateral prefrontal cortex),
caudate nucleus, hippocampus reflected the probabilistic knowledge on response biases (p <.005, 5 contiguous voxel extent thresholds, uncorrected). (B) Individual sample
graph for State-Space model parameters. The learning curve estimates are represented in the red lines. The upper and below lines indicate 90% confidence intervals. The
obtained parameter was used as parametric regressor in fMRI analysis. Probability of correct responses reached higher-than-chance level faster and remained more stable for
yea-sayer than naysayer targets. Moreover, certainty level that the ideal observer has was higher for yea-sayer learning, suggesting that perception of negative responses
involves greater variability.

showed that the Social Desirability score (Crowne & Marlowe, our experimental design did not allow us to directly examine
1960) predicted the degree to which the MTL region processes explicit memory for each item, the neuroimaging data provides
negative responses compared to positive ones (Fig. 5). Although preliminary evidence that, depending on a perceiver’s personality,
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Table 1

Regions processing negative versus positive performance feedback. Below are the
regions that demonstrate greater activation for incorrect performance feedback
versus correct performance feedback.

Regions Lat. x y z z-Score
Dorsomedial prefrontal cortex (dmPFC) L -6 26 46 3.85
R 6 20 49 4.72
9 23 40 3.92
Dorsolateral prefrontal cortex (DLPFC) L -36 141 34 379

-39° 17 34 3.77

—42 32 31 3.29

R 42 14 37 431
36 26 25 39

39 26 34 3.84

431
36 26 25 39

39 26 34 3.84

=l
S
N
—_
S
w
~

Temporo-parietal junction (TPJ)

Insula R 45 11 1 328
Inferior temporal gyrus L -51 5 -38 387
Posterior cingulate cortex (PCC) L -3 -43 31 3.55
Caudate nucleus R 120 -1 22 331
Hippocampus/parahippocampal gyrus L -15 -31 -11 3.2

-18 -22 -11 3.18
-10 -14 3.37

=~
w

Note: x, y, z corresponds to MNI coordinates of the maximum peak voxel.
2 Clusters identified in conjunction analysis.

Table 2
Regions tracking the State-space parameter. Below are the regions that reflect the
amount of knowledge estimated with the State-Space Model (SSM).

Regions Lat. x y z z-Score

Inferior Parietal Lobule (IPL) L —-36 —46 43 433
R 24 -55 64 4.11
15 -64 52 4.01

Dorsolateral prefrontal cortex (DLPFC) L -36 17 49 35
—45° 14 40 3.17

Temporo-parietal junction (TPJ) R 54 -28 43 34
Caudate nucleus L -21 -19 28 3.8
-12 2 25 2.77
R 18° 5 19 2.63

Ventromedial prefrontal cortex (vmPFC) L -9 23 17 32
Hippocampus/parahippocampal gyrus L -21 -28 -11 273

-3 -10 -23 264

Note: x, y, z corresponds to MNI coordinates of the maximum peak voxel.
¢ Clusters identified in conjunction analysis.

the “no” remarks of other people can have a more specific repre-
sentation than their “yes” remarks. There are two possibilities for
explaining this: either a perceiver’s own response bias led them
to treat the negative response as being more unique, or a perceiver
who tries to behave in a socially desirable way will regard a “no”
response as being socially undesirable, resulting in more sensitive
representation. It is necessary to further disambiguate explicit
memory for each item and the personality’s role in forming global
and specific representations.

4. General discussion

In the current study, we examined the neural correlates of
response bias learning, a procedure that helps us to accurately pre-
dict the future behavior of other people. We hypothesized that the
positivity or negativity of each response would asymmetrically
influence the formation of knowledge from interactions with a
peer. In order to test this hypothesis, we conducted behavioral
and neuroimaging experiments with a feedback-based learning
paradigm in which participants were required to, although not

"No" vs. "Yes" Feedback
1.0

0.5+

0.0 4

-051

Beta Values (arbitrary unit)

-1.0

Fig. 5. MTL involvement in processing “No” feedback as a function of social
desirability score. The map shows MTL ROI that is used for the analysis. Beta
estimates in MTL (medial temporal lobe) ROI were greater as a function of
Marlowe-Crown Social Desirability Scale (MCSDS, Crowne & Marlowe, 1960),
suggesting that a perceiver’'s own response bias has an influence on perception of
others’ biases.

explicitly asked to, form generalized knowledge about response
biases in order to make better predictions. The participants made
guesses and received feedback on whether the targets would agree
or disagree to perform suggested activities. We found that partici-
pants learned about their targets’ biases and made gradually
improved predictions about their targets’ answers in the direction
of their bias. With a limited number of interactions (Experiment 1),
learning performance was better with yea-sayer targets than with
naysayer targets, although this difference disappeared with an
increase in the number of interactions (Experiment 2). This differ-
ent learning pattern suggests that there is a fundamental asymme-
try in the way that we learn about positive/negative response
biases. The fMRI results also support the idea of there being a dis-
similar learning process. Brain regions, including the caudate
nucleus and DLPFC, reflected the degree to which positive answers
aggregated into evidence for yea-sayers, compared to the integra-
tion of negative answers into evidence for naysayers. The results
suggest that a perceiver regards a target’s positive answer as evi-
dence, as this indicates what the target’s internal judgment crite-
rion is. That is, individual experiences of seeing the target answer
“yes” are accumulated to form a generalized form of person knowl-
edge. This person knowledge then helps future prediction about
the target’s answers to novel questions. Additionally, our data also
suggests that negative responses will have a more specific repre-
sentation, especially when modulated by perceiver characteristics.
Those who are more biased to behave in socially desirable ways
showed greater levels of neural processing when dealing with neg-
ative answers.

Some might argue that the integrated learning of positive
response biases is opposed to intuition, since, in general, negatively
valenced events have a stronger impact than positively valenced
events (for a review, see Baumeister, Bratslavsky, Finkenauer, &
Vohs, 2001; Rozin & Royzman, 2001). Anderson (1982) proposed
an information-integration model in which negative information
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outweighs positive information when integrated into knowledge,
and Gottman'’s positive-to-negative ratio (Gottman & Levenson,
1992, 1999) provides empirical evidence that positive interaction
is needed five times more than negative interaction for a successful
relationship. In other words, one bad interaction may ruin five
good interactions. This significance of negatively valenced events
makes sense in terms of survival value. It is crucial in preventing
bad consequences to remember a person to avoid. However, it is
important to note that saying “no” is not necessarily a negative
characteristic of the responder. Moreover, observing a negative
answer is not necessarily a negatively valenced event to a per-
ceiver. The primary information conveyed by “no” is less a decision
against the perceiver, than a preference of the responder. If partic-
ipants choose to suggest that a target perform certain activities
instead of merely observing answers, they may more readily recog-
nize naysayers because “no” is more emotionally charged and neg-
atively valenced in this case. This is a possible independent
research topic on its own. Nevertheless, in the present experiment,
the positive/negative answer of the target was information whose
content was positive or negative without direct emotional rele-
vance to the perceiver. Thus, positive answers, with a lower varia-
tion in the kind of positivity (Unkelbach et al., 2008), can be
integrated into homogeneous person knowledge, as found in our
results. Moreover, our results are well suited to Gottman'’s positive
to negative ratio (Gottman & Levenson, 1992), so that not doing
what the person hates is more important than doing what she
likes. To be recognized and avoided appropriately, activities that
elicit negative response should have representations that are more
specific. On the contrary, it is more efficient to recognize the posi-
tive person, not the activity per se, when there is nothing to be
avoided.

Concerning the neural correlates involved in learning about
yea-sayers, we discovered that, when analyzed in terms of how
knowledge is updated through incorrect performance feedback
and the modulation of integrated knowledge, among the most
important brain regions were the caudate nucleus and DLPFC.
Although these regions have been found to process feedback and
help future behavioral adjustment (Zanolie et al., 2008), to our
knowledge, this was the first study to determine the degree to
which they respond to incorrect performance feedback and to also
show that this response varied according to the amount of knowl-
edge which had accrued. It is worth noting that these regions were
not equally activated for every incorrect performance feedback, but
were modulated by previously accrued information. This pattern
implies that these regions possess the ability to utilize prior
information when updating knowledge with newly acquired
information.

The involvement of the caudate nucleus, uncovered in the cur-
rent study, is also in accordance with previous research, which
found that this part of the dorsal striatum was involved in instru-
mental learning (Cooper, Dunne, Furey, & O’'Doherty, 2012). When
there is a response-outcome contingency, which requires that we
update action values for future positive outcomes, the caudate
nucleus functions by updating action values and making decision
according to the outcome. For example, Tricomi, Delgado,
McCandliss, McClelland, and Fiez (2006) found that performance
feedback elicited bilateral caudate nucleus activation in a phono-
logical learning task, and Cooper, Dunne, Furey, and O’Doherty
(2012) discovered the caudate nucleus’s role in instrumental
observational learning. Moreover, in a comparative single cell
recording study, Samejima, Ueda, Doya, and Kimura (2005) showed
that neurons in the caudate nucleus of monkeys encoded action
values. Although there is inconsistency between our result and
most of the previous findings which indicated that a positive feed-
back drives caudate nucleus activation (Delgado, Miller, Inati, &
Phelps, 2005; Tricomi et al., 2006), Tricomi and Fiez (2012)

recently showed that the caudate nucleus is activated when
receiving incorrect performance feedback. In their study, the incor-
rect feedback was manipulated to provide greater informative
value and, thus, could be interpreted as an intrinsic reward that
in the long run helps goal attainment (Tricomi & Fiez, 2012). More-
over, Han, Huettel, Raposo, Adcock, and Dobbins (2010) showed
that striatal activation is related to goal attainment in episodic
memory, as manipulating a goal in episodic retrieval (i.e. a hit
and correct rejection) heightened the importance of information
that pertained to goal attainment. Likewise, in the present study,
incorrect performance feedback indicated an informational gap
between the predicted and actual response. Subjective evidence
for prediction was gradually increased as targets were repeatedly
presented, and when the prediction was incorrect, there was a lar-
ger gap to be updated and the feedback conveyed greater informa-
tion. Therefore, we reasoned that it is the informational value of
incorrect feedback that drives caudate nucleus activation. Together
with this, the finding that caudate nucleus activation was modu-
lated by the amount of knowledge (i.e., previously acquired infor-
mation) gives further support to informational processing in the
caudate nucleus.

In addition to striatal activation, we found that feedback pro-
cessing hired the DLPFC, and that the region was modulated by
probabilistic knowledge about the response bias. This result is in
line with findings that the DLPFC plays a role in adjusting behav-
iors through acquired information. In a study by Zanolie et al.
(2008), the DLPFC was activated by informational error feedback
that helped behavioral adjustment, but unexpectedly incorrect
feedback, without any informational value, did not activate the
DLPFC. Moreover, adults hired the DLPFC in feedback processing
while children, who have not fully developed the ability to utilize
performance feedback to adjust future behavior, did not show
feedback sensitivity in the DLPFC (van Duijvenvoorde, Zanolie,
Rombouts, Raijmakers, & Crone, 2008). These findings contribute
to the conclusion that the DLPFC helps to exert goal-directed
behavior through utilizing error feedback. Although the current
study’s gradual learning paradigm was different from the feed-
back-based rule learning paradigm in those studies, the DLPFC’s
involvement was still found in the current study, expanding its role
to include feedback utilization in gradual learning. Additionally,
the amount of knowledge that accrued, which is accumulated up
to the point of prediction, was found to modulate how incorrect
feedback is utilized to make an accurate prediction, further sup-
porting an informational account. That is, the DLPFC showed a
higher level of involvement when there was a greater amount of
information to update.

In summary, we found that learning about yea-sayers hires the
caudate nucleus and DLPFC for feedback processing. In these
regions, “yes” feedback elicited a probabilistic integration into
the homogeneous concept of a yea-sayer. Further, the greater the
amount of previously acquired knowledge about the response bias,
the more updates with feedback occurred in these regions. This
result implies that these regions utilize newly acquired informa-
tion to form generalized knowledge while being modulated by pre-
viously acquired information. These findings suggest that the
caudate nucleus and DLPFC are information-processing regions
that store and update knowledge about response biases, thus
enabling us to make better predictions about the behavior of other
people.
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